Special Lecture

The morphological science of hard tissue
“The advancement of methodology and recent views on the morphological research of hard tissue”
Hidehiro Ozawa
Matsumoto Dental University Graduate School of Oral Medicine

It is well known that “the advancement of science is commensurate with the advancement of methodology”, and the same is true of the morphological research of hard tissue. Because mineralized matrices make it difficult to get thin sections of hard tissue, several specific methodologies have been developed in morphological research of hard tissue. For example, decalcification methods introduced for thin sectioning of hard tissue have made it possible to develop fine structural observations and several histochemical studies of hard tissue. Additional improvements and ingenious advancements have been needed, however, because decalcification causes dislocation and/or diffusion of some organic and inorganic materials. I would now like to introduce several morphological methods for hard tissue, and some results from the field of hard tissue research.

Symposium

Overview:S-1

A principle for hard tissue reconstruction
Yoshinori Kuboki
Professor Emeritus, Hokkaido University

So much anticipation from the side of needy patients is caused by recent advance of tissue engineering technology. However, it seems that effective results can be hardly achieved unless we establish the proper principles for this technology. For this reason, we previously published a book, “Principles of Hard Tissue Reconstruction” in 1989, proposing the five factors theory, that is: (1) cells, (2) natural and artificial matrices,(3) regulators (4) vascularization and (5) mechanical dynamics, must be taken into consideration for effective bone reconstruction. We emphasized importance of their geometry, above all the concept of “optimal spaces” that guides and orients the hard tissue formation.

S-2

Functional biomaterials for the regeneration of hard tissue
Junzo Tanaka
Tokyo Institute of Technology

Biological tissues are composed of many compounds, e.g. proteins, polysaccharides, nucleotides and calcium phosphates, etc. These compounds in the tissues generally form well-organized structure build up from nanometer-scale. In order to reproduce such nanostructure or to create novel high functional biomaterials that induce cell responses similar to or better than autologous tissues, interfacing interactions between compounds in the biomaterials are important. In the present paper, an artificial bone material composed of hydroxyapatite/collagen self-organized nano-composite is introduced for one good example for novel highly functional biomaterials synthesized by soft-nanotechnology. In near future, such well-controlled functional nano-materials will be applied to the treatment of osteoporosis and cancer, etc.

S-3

Industrialization of growth factors for hard tissue reconstruction
Shigeki Hijikata
FGF Strategic Planning, Kaken Pharmaceutical Co. Ltd.

Major growth factors were discovered from 1960s to 70s and mass-production methods of them were established with development of biotechnology in 1980s. As a result, many health science companies tried to develop the drugs or
medical devices for hard tissue reconstruction using growth factors. BMP-2, OP-1 (BMP-7) and PDGF have already been launched as medical devises for hard tissue reconstruction in the US and Europe. In Japan, although hard tissue reconstruction drug has not been launched yet, two clinical trials using bFGF for fracture healing and regeneration of periodontal tissue including alveolar bone are ongoing.

S-4

History and problems of medical ceramic materials

Summary of ceramics in medicine and advanced materials

Toshiyuki Akazawa

Section of Materials Chemistry, Department of Materials Technology, Hokkaido Industrial Research Institute

In graving society, for regenerative therapy for patients, ceramics in medicine are important biomaterials and collaboration among the educational-industrial-administrative complex is an effective action. After returning the transition of bioceramics, functionally graded apatites (fg-HAp) originated from natural bone will be outlined as an interdisciplinary study focusing on biomimetic materials. The role and scheme of regenerative therapy-studies that are useful out there will be discussed. Since fg-HAp has excellent degradation-absorption, rhBMP-2-adsorption and release characteristics due to body fluid permeation and blood permeability, rhBMP-2/fg-HAp is an osteoinductive bioceramic with bone-remodeling. The fg-HAp can be designed and controlled by the calcination and dissolution-precipitation and it might be applied to higher advanced medical care by strong connection with medical and dental teams.

S-5

New medical system using autogenous tissues -Biorecycle medical treatment-

Masaru Murata

Oral and Maxillofacial Surgery, School of Dentistry, Health Sciences University of Hokkaido

The osteoinductive property of rabbit demineralized dentin matrix (DDM) was discovered in 1967. A surprising operation for recovering female’s eyesight, osteo-odonto-keratoprosthesis therapy, was first done in 2003, Japan. This symposium introduces the basic researches of human DDM and the pioneering clinical trials of the autogenous DDM prepared by our developed automatic machine. Several DDM autograft cases for local bone augmentation will be discussed.

2006 Award Special Lecture

Gene expression patterns of modulators for collagen mineralization during initial mineralization by osteoblasts cultured on titanium implant material

Takashi Matsuura

Department of Oral Rehabilitation, Fukuoka Dental College

Titanium implants create a unique collagenous ultrastructure with thinner fibril morphology at the bone-implant interface. This study investigated the temporal mRNA expression patterns of collagen-binding small leucine-rich proteoglycans (SLRPs), lysyl hydroxylases (LHs), and matrix metalloproteinase (MMP)-3 and -13 during mineralization by MC3T3-E1 cells cultured on titanium. The members of SLRPs showed the distinct patterns from one another during mineralization, likewise, the members of LHs and MMPs showing the different. Although remaining to be investigated, SLRPs and LHs, modulators for collagen fibrillogenesis, and MMP-3 and -13, which degrade SLRPs and collagens, may play actual but distinct roles on the formation of a unique ultrastructure at the bone-implant interface.

Oral Session

Osteoclast survival is enhanced by p38 MAPK signaling

Teruhito Yamashita1), Yasuhiro Kobayashi1), Sakae Tanaka3), Nobuyuki Udagawa2) and Naoyuki Takahashi1)

1) Institute for Oral Science, Matsumoto Dental University
2) Department of Biochemistry, Matsumoto Dental University
3) Department of Orthopedic Surgery, University of Tokyo

To clarify the role of p38 MAPK in the survival and activation of osteoclasts, we examined whether forced-phosphorylation of p38 MAPK modulates osteoclast function. Phosphorylation of p38 MAPK in osteoclasts was not induced by LPS, although JNK and
ERK were activated. Adenoviral expression of a constitutively active form of MKK6 (MKK6CA) in osteoclasts resulted in phosphorylation of p38 MAPK. MKK6CA expression enhanced the survival of osteoclasts. Dentine-resorbing activity of MKK6CA-expressing osteoclasts was not altered. These findings suggest that activation of p38 MAPK signaling in osteoclasts enhances their survival.

Effects of far-infrared radiation (FIR) on osteoblast-like cells (MC3T3-E1) and bone formation

Tatsuo Ishikawa¹, Kikuji Yamashita¹, Jun Ishibashi², Kaori Sumida³, Takafumi Masui³ and Seiichiro Kitamura³

¹ Department of Oral and Maxillofacial Anatomy, Graduate School of Health Biosciences, University of Tokushima
² Buranka Dental Office

To investigate the effects of FIR, we cultured osteoblast-like cells, MC3T3-E1 in with and without FIR incubator we had developed. Histological observation, comprehensive genetic analysis with PCR, and microarray methods were performed. Proliferation of osteoblasts were suppressed, expression of calcified nodules were upregulated by 29 per cent. Alkaline phosphatase, osteocalcin and expression of related-genes of interferon were facilitated. In vivo, though mice with FIR lost body weight, they gained bone weight compared with non-irradiated control. These results indicate promoter effects of bone formation and induction of expression of IFN.

β-alanyl-L-histidinato zinc decreases M-CSF expression by osteoblast

Noato Suzuki¹,³, Natsuko Tanabe¹,³, Masao Maeno²,³ and Kichibe Otsuka³

¹ Department of Biochemistry, Nihon University School of Dentistry
² Department of Oral Health Sciences, Nihon University School of Dentistry
³ Division of Functional Morphology Dental Research Center, Nihon University School of Dentistry

We examined the effect of β-alanyl-L-histidinato zinc (AHZ) on expression of M-CSF by osteoblastst (MC3T3-E1). AHZ suppressed both mRNA and protein expression of M-CSF induced by TNF Rel/NF-κB activation in response to TNF-α was down-regulated by AHZ. These results suggest that AHZ may inhibit osteoclast differentiation via decreasing Rel/NF-κB activation and subsequent expression of M-CSF by osteoblast. Moreover, when osteoclast precursor cells (RAW264.7) were cultured with soluble RANKL, number of TRAP-positive cells was decreased by the addition of AHZ.

A basic research of CaTiO₃-C as a coating material for implants

HaiLong Hu¹, Mika Okauchi¹, Ryo Tamamura¹, Andrea Paola Rodriguez¹, Miho Inoue¹, Keisuke Nakano², Toshiro Sagae³, Hitoshi Nagatsuka¹, Toru Takagi¹ and Noriyuki Nagai¹

¹ Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
² Department of Anatomy 2nd., Nihon University School of Dentistry at Matsudo
³ Laboratory for Structure and Function, Faculty of Pharmaceutical Sciences, Tokushima Bunri University

A binding material called calcium titanate with amorphous carbon (CaTiO₃-C) has been developed to enhance the bond strength and stability without increasing the interface between hydroxyapatite (HA) and titanium. Modified thermal decomposition method was used to increase Ca/P and Ca/Ti ratios and to decrease sintering temperature. Results revealed that a thin and homogenous coating was created between HA and titanium enhancing the bond strength as well as the stability of the implant. CaTiO₃-C was negatively charged same with HA but had lower solubility than HA. The results suggest that CaTiO₃-C induce long-term bone formation and possibly a coating material for implants.

Evaluation of CaTiO₃-C in vitro Study

Miho Inoue¹, Andrea P. Rodriguez¹, Mika Okauchi¹, Ryo Tamamura¹, HaiLong Hu¹, Masahisa Inoue³, Hitoshi Nagatsuka¹, Toshiro Sagae³, Noriyuki Nagai¹

¹ Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
² Laboratory for Structure and Function, Faculty of Pharmaceutical Sciences, Tokushima Bunri University

Nowadays, titanium and hydroxyapatite (HA) are widely used as biomaterial for dental and medical applications. HA-coated titanium implants has excellent biocompatibility and mechanical properties. However, the adherence of HA film formed on titanium substrate is weak, because of the lack of chemical interaction between HA and titanium. A solution to this problem is to form an intermediate film on titanium substrate, which provideescellent adherence to both titanium substrate and HA. Because of this, we have developed a novel biomaterial called Calcium Titanium Oxide – Amorphous Carbon (CaTiO₃-C; patent: 2005-269868; 2005-269869). The purpose of this study was identification of cellular proliferation and differentiation, response of osteogenic cells, and cytotoxicity. Osteoblastic cell line MC3T3-E1 were cultured with powder of CaTiO₃-C and HA, and on Ti-etching plate coating with CaTiO₃-C, HA. CaTiO₃-C has high cellular proliferation and no cell toxicity compared to HA.

Properties of osteoinduction and BMP-2 release in β-TCP from spongy bone

Junichi Tazaki¹, Masaya Yamamoto², Yasuhiko Tabata², Toshiyuki Akazawa³, Jun Hino¹, Masaru Murata⁴, Makoto Arisue⁴ and Takanori Shibata¹

¹ Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
² Hard Tissue Pathology Unit, Matsumoto Dental University Institute for Oral Science
³ Department of Anatomy 2nd., Nihon University School of Dentistry at Matsudo
⁴ Laboratory for Structure and Function, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
The aim of this study is to investigate in vivo local BMP-2 PK and bone induction in two bioelectronic blocks, based on different composition and surface structures. Spongy bones in bovine femur were calcined at 800 °C by the step-wise calcinations to obtain bulk HAp (b-HAp). The β-TCP from spongy bone (β-TCP HAp) was designed by the partial dissolution-precipitation method. We estimated the in vivo release profile of 125I–labeled BMP-2 and induction of hard tissues histologically. The β-TCP/HAp is more effective for both BMP-2 retention and bone induction, compared to b-HAp.

Experimental study on regeneration of the temporomandibular joint (TMJ) disc using in situ tissue engineering

Eizaburo Kobayashi1, Tatsuo Nakamura2, Kazuhiya Mori3 and Izumi Mataga4

1Department of Oral and Maxillofacial Surgery II, School of Life Dentistry at Niigata, Nippon Dental University
2Department of Bioartificial Organs, Institute for Frontier Medical Sciences, Kyoto University

The purpose of this study is to induce the regeneration of the TMJ disc and to evaluate it histologically. Japanese white rabbits were used. The TMJ was surgically exposed and a round full-thickness perforation was made in the center of the disc. In group A, a collagen sponge was placed in the perforation. In group B, a collagen sponge mixed with autologous bone marrow was placed in the same methods. In group A, after 12 weeks, the perforation was still not completely closed. In group B, after 2 weeks, regeneration of the disc was seen. This result may indicate that the collagen sponge with autologous bone marrow has a potential to induce the regeneration of the damaged TMJ disc.

Involvement of CD81 in abnormal growth of RA synovial cells

Hiroki Mori1, Hitoshi Nagatsuka2, Ryo Tamamura2, Keiichiro Nishida2, Toshihiro Nakajima1, Noriyuki Nagai2 and Tohru Nakanishi1

1School of Pharmacy, Shujitsu University
2Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
3School of Medicine, St. Marianna University

Synovial fibroblasts abnormally proliferate and generate osteoclasts under stimulated condition in rheumatoid arthritis (RA). We focused on the abnormal proliferation of RA synovial fibroblasts, and characterized these RA synovial fibroblasts by DNA chip profiling of gene expression. The results showed that CD81 mRNA is highly expressed in RA synovial fibroblasts. Furthermore, stimulation of a synovial cell line with monoclonal antibodies against CD81 molecule promotes the expression of Synoviolin, a causative factor for RA with anti-apoptotic effect on synovial cells. These results suggest that CD81 is an upstream regulator of synoviolin gene, and is involved in the initiation and progression of RA.

Calcification of the basement membrane under the proximal convoluted renal tubule after intravenous injections of lanthanum

Tateo Daimon1, Makoto Miyagawa2 and Yoh Katoh3

1Department of Anatomy, School of Medicine, Teikyo University
2Central Experimental Animal Center, School of Medicine, Teikyo University
3Faculty of Health Sciences, School of Radiology, Tokyo Metropolitan University

The present study was undertaken to determine the effects of Lanthanum (La) on the kidney of the rat using an analytical electron microscope equipped with EDX analyzer. The animals were treated with five intravenous injections of La at 5mg La/kg BW per a week. The kidney was frozen and freeze-substituted in acetone using a freezing device. X-ray microanalysis defined the accumulation of La in the lysosomes of the mesangial cells and the matrix of the basement membrane of the tubular cells. A high amount of Ca and P was also detected in the La precipitates on the basement membrane indicating the calcification.

Biological analysis of a candidate stem cell–KUSA/A1 cell–for bone tissue engineering

Andrea Paola Rodriguez, Tsujiigiga Hitetsugu, Nagatsuka Hitoshi, Borkosky Silvia, Takagi Tohru, Hailong Hu, Tamamura Ryo and Nagai Noriyuki

Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University

KUSA/A1 cell is a bone marrow stromal cell, capable of differentiating into osteoblasts under inducing conditions. We demonstrated that KUSA/A1 cells with non-osteogenic potential seeded in diffusion chamber differentiated into osteoblasts and produced mineralized bone-like tissue. Finally, we evaluated the effect of honeycomb scaffold to produce abundant bone formation using KUSA/A1 cells implanted in subcutaneous tissues of SCID mice. 1x106 KUSA/A1 cells with honeycomb scaffold showed abundant new bone formation. While, 5x106 KUSA/A1 cells alone showed only few small islands of new bone. This study support that KUSA/A1 cell is a good candidate for basic research in bone tissue engineering.
An investigation of the ability to differentiate to dental tissue cells of the bone marrow derived mesenchymal stem cells

Hidetsugu Tsujigiwa1, Hitoshi Nagatsuka2, Andrea Paola Rodriguez3, Hailong Hu3, Masao Yamada1 and Noriyuki Nagai2

1Department of Virology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
2Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University

We investigated the differentiation ability of the bone marrow derived stem cells, using GFP transgenic mice and rats. Wild-type mice/rats were irradiated (totally 10G) and transplanted GFP mice/rats derived bone marrow cells from caudal vein. After the transplantation, mice/rats were sacrificed and the dental tissues of them were analyzed histologically and biochemically. Immunohistochemically, GFP positive cells were observed in periodontal tissue and dental pulp. In the primary cell culture from these tissues, dominantly proliferated cells were GFP positive and posses calcifying ability. These results suggested that bone marrow derived stem cells may posses differentiation ability to periodontal tissue and odontoblasts.

The role of Cbfal on endochondral ossification in fetal bone implantation

Masahisa Inoue, Kojun Setsu, Masahiko Akita and Tomomi Abe

Laboratory for Structure and Function, Faculty of Pharmaceutical Sciences, Tokushima Bunri University

We investigate the role of Cbfal on endochondral ossification using the fetal femur transplant mouse. Femurs on embryonic day 17 extirpated from Cbfal KO and wild type mouse were transplanted to the dorsal subcutaneous of normal mice. Specimens at 1 to 3 weeks after transplantation were examined histologically and biochemically. Using H.E.staining and immunohistochemistry for osteocalcin and type II collagen. On the transplanted bone of Cbfal KO mouse, Notch1 peptides and its genes (mRNA) in both ameloblastoma and ameloblastic carcinoma. After histopathological examination (hematoxylin and eosin: H&E), the

Diphenylhydantoin (DPH) suppressed osteoclast function at local

Masanori Koide1, Tadashi Ninomiya1, Yasuhiro Kobayashi1, Hiroaki Nakamura1, Nobuyuki Udagawa1,3 and Naoyuki Takahashi1

1Institute for Oral Science, Matsumoto Dental University
2Department of Oral Histology, Matsumoto Dental University
3Department of Biochemistry, Matsumoto Dental University

DPH is often used as a drug for anticonvulsant. DPH has been reported to promote bone resorption. However, the effects of DPH on local bone metabolism are still unclear. The purpose of this study is to determine the effect of DPH on osteoclast (OC) function. Mouse OC cultured on dentin slices formed many resorption pits on the slices. DPH (200 ?M) completely inhibited pit-forming activity. Endochondral ossification of chondrocyte lacunae was not observed, and Cbfal may play an important role for destruction of chondrocyte lacunae. These results suggest that DPH is a potent anti-bone resoring drug in local bone diseases.

The effect of Sho-saiiko-to (TJ-9) on human gingival fibroblasts

Toshiaki Ara1,2, Yoshihiro Maeda2, Joji Itai3, Yasuhiro Imamura1,2 and Pao-Li Wang1

1Department of Pharmacology, Matsumoto Dental University
2Department of Hard Tissue Research, Matsumoto Dental University, Graduate School of Oral Medicine

The anti-inflammatory effects of TJ-9 were examined using human gingival fibroblasts (HGFs). HGFs were treated with the combination of LPS derived from P. gingivalis (10 ng/ml) and TJ-9 (0-0.2%w/v) for 24 h, and the amount of PGE$_2$ in culture supernatants was measured by ELISA. LPS-induced PGE$_2$ production was significantly decreased by TJ-9. The LPS-induced COX-2 expression was decreased by 0.1 and 0.2%w/v, whereas no apparent difference in PLA$_2$ expression was observed. These results suggest that TJ-9 suppressed PGE$_2$ production by the inhibition of COX-2 activity and therefore that TJ-9 has anti-inflammatory effect on periodontal disease.

Notch signaling in malignant tranceforming of odontogenic tumor

Keisuke Nakano1, Hitoshi Nagatsuka2, Hidetsugu Tsujigiwa1, Takako Shimizu1, Siar CH1, Noriyuki Nagai3 and Toshiyuki Kawakami1

1Hard Tissue Pathology Unit, Matsumoto Dental University Institute for Oral Science
2Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University
3Department of Virology, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University

Notch signaling is responsible for cytological regulation of cell fate, morphogenesis and/or development. In this research, we examined Notch1 peptides and its genes (mRNA) in both ameloblastoma and ameloblastic carcinoma. After histopathological examination (hematoxylin and eosin: H&E), the
distribution of Notch1 intracellular domain (NICD) was examined by immunohistochemistry (IHC) using anti-human NICD monoclonal antibody. The IHC and ISH examination results suggest that Notch signaling plays some role in cytological differentiation or acquisition of tissue specific characteristics in neoplastic cells of tooth enamel organ-derived neoplasms, including benign and malignant neoplasms, ameloblastoma and ameloblastic carcinoma.

Poster Session

Periodontal tissue reaction to mechanical stress in mice

Takehiro Watanabe1), Rina Muraoka1), Takako Shimizu2), Keisuke Nakano1), Norimasa Okafuji1), Saburo Kurihara2), Kazuhiro Yamada1) and Toshiyuki Kawakami1,2)

1) Department of Hard Tissue Research, Matsumoto Dental University Graduate School
2) Matsumoto Dental University Institute for Oral Science

We examined the periodontal tissue reaction course of mice to mechanical stress according to the Waldo method. In the examination group, the arrangement of the periodontal ligament was irregular on specimen day 1. The extension and compression sites were observed at the opposite side of the roots. In day 1 and 3 specimens, the osteoclasts appeared in the compression sites. Immunohistochemical examination revealed that the expression patterns of Runx2 and Msx2 were clearly dynamic changed compared to the control specimens. These results suggest that the appearance of transcription factors related to cell differentiation of periodontal ligament, happened within 24 hours.

The effect of local bFGF administration for growth of mouse mandibular head

Yuki Aoyama1), Yosinori Ara1), Fa-Chih Shen1), Akihiro Kimura1,2), Saburo Kurihara1), Kazuhiro Yamada1) and Hasegawa Hiromasa1,2)

1) Department of Hard Tissue Research, Matsumoto Dental University Graduate School
2) Matsumoto Dental University Institute for Oral Science

Twenty-three in FGF family have various physiological activities, and bFGF is now being applied for wound healing. So we studied bFGF on the effect of mandibular condyle growth. The solution (0.1µl) of bFGF was injected around the mandibular condyle of ddY mice (1-3 days after birth). Morphometrical analyses of both 3DµCT images and histology showed that the size of experiments were larger than that of controls. However, there was no hyperplastic change in experiments. The proliferating index of experiments was significantly higher than that of controls. Local application of bFGF might be useful for facilitating the growth of mandibular head.

SNPs analysis of the enamerin gene in severe dental caries of primary dentition period

Ken Ouryouji1), Yasuhiro Imamura2,3), Yoshihisa Fujigaki1), Hiroo Miyazawa1,4) and Pao-Li Wang2,3)

1) Department of Pediatric Dentistry, Matsumoto Dental University
2) Department of Pharmacology, Matsumoto Dental University
3) Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University
4) Department of Oral Health promotion, Graduate School of Oral Medicine, Matsumoto Dental University

An inherited factor is one of the cause of dental caries. We examined the relationship between SNPs of the enamerin gene and severe dental caries of primary dentition period. The subjects were 120 unrelated individuals of which 75 were severe dental caries patients (dmft+10) who visited Matsumoto Dental University hospital, and 45 were healthy volunteers serving as controls. The lingual cells from subjects were harvested with tooth brush and DNAs were extracted. SNPs analysis of the enamerin gene at the position+2452 was carried out a PCR-RFLP method using DNAs and the specific primers. It is suggested that no significant difference was observed between healthy and severe caries subjects. The other candidate genes should be examined.

Increase of intracellular calcium concentration in MC3T3-E1 cells by stannous compound

Toshimi Hattori and Pao-Li Wang

Department of Dental Pharmacology, Matsumoto Dental University

SnF2 is used as one of prophylactics of dental caries and Sn2+ may be involved in its action. MC3T3-E1 cells were used as the material. SnCl2 was adopted as the stannous compound. To determine which types of Ca2+ channels these cells possess and to examine the effects of SnCl2 on the intracellular calcium concentration ([Ca2+]i). High K+ medium-induced rise in [Ca2+]i was significantly inhibited by nifedipine and verapamil, but not by Ô-conotoxin GVIA or NiCl2. These findings lead us to the conclusion that SnCl2 elevates the [Ca2+]i in MC3T3-E1 cells by enhancing Ca2+ entry through the L-type Ca2+ channels.

Study of the effect of porous titanium on proliferation and differentiation of osteoblast-like cell MC3T3-E1

Yoshihiko Sugita1), Katsutoshi Kubo1), Emiko Sato1,3) and Hatsuhiko Maeda1,3)

1) Departments of Pathology, School of Dentistry, Aichi-Gakuin University
2) Departments of Pathology, School of Dentistry, Aichi-Gakuin University
3) Departments of Pathology, School of Dentistry, Aichi-Gakuin University
The 16th Annual Meeting of The Society for Hard Tissue Regenerative Biology

2) Dental Material Science, School of Dentistry, Aichi-Gakuin University
3) Research Institute of Advanced Oral Science, Aichi-Gakuin University

The objective of this study was to evaluate the effects of porous titanium on proliferation and differentiation of osteoblast-like cell (MC3T3-E1). In this study, the mRNA expressions of alkaline phosphatase, osteopontin and osteocalcine were investigated using real-time PCR. These mRNA expressions were not controlled. These results suggested that the porous titanium was useful scaffolds for tissue engineering applications of bone formation. In addition, we conclude that real-time PCR is useful to assess biocompatibility of biomaterials.

Cell type specific expression of the salivary histatin 3 gene

Yasuhiro Imamura1,2), Yoshihisa Fujigaki2) and Pao-Li Wang1,2)

1) Department of Pharmacology, Matsumoto Dental University School of Dentistry
2) Department of Hard Tissue research, Graduate School of Oral Medicine, Matsumoto dental University

Salivary histatins are histidine-rich polypeptides, which have an anti-microbial activity and inhibit proteases from oral bacteria. Histatins are also specifically expressed in salivary glands. However, it has not been clarified the expression mechanisms of those genes. We have cloned the histatin 3 gene promoter and its various deletion mutants were constructed luciferase reporter plasmids. The -2108 ~ -2082 region of the promoter worked as a positive transcriptional element in HSG cells (salivary gland). In contrast, their expressions were not observed in the other cell types. A protein bound to the region was 100 kDa by UV-cross linking analysis. Taken together, the expression of the histatin 3 gene may have cell type specificity.

Two dimensional analysis of the degree of calcification of new bones around implants

Taketoshi Suwa1,2), Toshiro Sakae3), Hiroshi Nakada2), Yasuko Numata2), Isamu Sato3)

1) Institute of Quantum Science, Nihon University
2) Gnatho-Oral Prosthetic Rehabilitation, Nihon University School of Dentistry at Matsudo
3) Departments of Histology, Cytology and Developmental Anatomy, Nihon University School of Dentistry at Matsudo

To clarify new bone tissues, radiography with a newly developed tunable wavelength and highly parallel Parametric X-ray, PXR, was applied. Coated or grit-blasted Ti-alloy implants modified with coating or blasting were implanted in surgically created defects in rabbit tibia. Undecalcified polished thin sections were prepared from the implant/bone areas 1, 2 and 4 weeks after implantation. LEBRA-PXR allows quantitative of initial stage of new bones.

This study was supported in part by the Grant-in-Aid for Young Scientists (B: 19791462) from the JSPS.

Examination on microstructure of acid-etched titanium-tissue interface

Katsutoshi Kubo, Yoshihiko Sugita, Emiko Sato and Hatsuhiko Maeda

Department of Pathology, School of Dentistry, Aichi-Gakuin University

This study presents the first observation of the interface between acid-etched titanium and cultured osteoblastic tissue at micro- and ultra-structural levels. Rat bone marrow stromal cells were cultured on the thin titanium disk for 14 days. The cultured tissue was examined by SEM and EDS elemental mapping. EDS line scan from the outer surface of tissue to the titanium interface revealed that elemental peaks of Ca and P existed in an identical level of vicinity, while the element of oxygen was distributed widely in the tissue with its peak at 3 mm from the titanium surface. EDS area mapping confirmed a uniform Ca spread within the 2 mm range of tissue. We have succeeded cross-sectional imaging of the acid-etched titanium and cultured mineralized tissue interface. The interface at day 14 of culture was characterized by the intense localization of calcium.

Basic research for crystal composition of sialolith

Chie Toyoda1), Toshiro Sakae3), Hiroyuki Okada3), Hirotugu Yamamoto3) and Yoshiaki Akimoto3)

1) Dent-Maxillofacial Surgery Nihon University Graduate School of Dentistry at Matsudo
2) Departments of Histology, Embryology and Anatomy, Nihon University School of Dentistry at Matsudo
3) Department of Oral Pathology, Nihon University School of Dentistry at Matsudo
4) Department of Oral Surgery, Nihon University School of Dentistry at Matsudo

Sialolith is an ectopic calcification of high frequency in oral region but the details were unclear. In this study, histo-pathological stainings, Micro-XDR and Micro-FTIR were carried out to investigate structure and chemical composition of sialolith. Micro-XRD showed that amount and orientation of biological apatite varied in the samples. Micro-FTIR analysis showed the variations in strength and ratio of absorption bands due to phosphate ions and carbonate ions. Histo-pathological observation revealed the inner core and the outer shell. From these results, it was suggested that these sialoliths were formed in complex manner reflecting the variation in circumstances.

Alveolar bone regeneration by periodontal cells
Diabetes mellitus (DM) often accompany the mouth dryness symptom. Recently, the therapy of DM with the Japanese traditional medicine is noted and the research is continued. In this study, the effects of Byakko-ka-ninjin-to and Gorei-san on salivary flow were examined in streptozocin (STZ)-induced diabetic mice. The blood glucose level was maintained at 300 mg/dL from 7 to 21 days after administration of STZ. At day 21, salivary flow was significantly decreased in mice administered with STZ compared with control group. Administration of Byakko-ka-ninjin-to or Gorei-san to the STZ-induced DM model mice was recovered from hyperglycemia and saliva flow disorders.

Search for chronic periodontitis-related gene by SNPs analysis

Yoshihisa Fujigaki1), Yasuhiro Imamura2), Ken Ouryouji3), Hiroo Miyazawa4), and Pao-Li Wang1,2)

1) Department of Hard Tissue Research, Graduate School of Oral Medicine, Matsumoto Dental University
2) Department of Pharmacology, Matsumoto Dental University
3) Department of Pediatric Dentistry, Matsumoto Dental University
4) Department of Oral Health Promotion, Graduate School of Oral Medicine, Matsumoto Dental University

Periodontal disease is the effect of its variety and environmental condition. It has not been clarified the relation between this disease and hereditary factor. In this study, polymorphisms of the antimicrobial peptide genes, histatin3 (from saliva) and -defensin 1 (from epithelial cells), were analyzed. Adult healthy and chronic periodontal subjects were 100 persons, respectively. SNPs analysis was carried out a PCR-RFLP method using DNAs from the subjects and specific primers. The results indicated that the polymorphisms of both genes were no significant difference statistically. The other candidate genes should be examined.

Notch signaling in mandibular condylar cartilage development

Takako Shimizu1), Keisuke Nakano2), Hidetsugu Tsujigawa3), Hitoshi Nagatsu4), Takehiro Watanabe5), Norimasa Okafuji5), Saburo Kurihara6), Hiromasa Hasegawa7), Noriyuki Nagai4) and Toshiyuki Kawakami1,2)

1) Department of Oral Histology, Matsumoto Dental University
2) Department of Oral and Maxillofacial Anatomy, University of Tokushima Graduation School
3) Department of Virology, Graduate school of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
4) Department of Oral Pathology and Medicine, Graduate school of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
5) Department of Oral Health Promotion, Graduate School of Oral Medicine, Matsumoto Dental University
6) Department of Oral Histology, Matsumoto Dental University
7) Department of Oral Histology, Okayama Dental University

To investigate the expression pattern of Notch signaling, we fixed mandibular condyles of ddY mice from embryonic days E14 to just after birth (E19). In IHC at E14, expression of Notch peptide was observed in the nuclei of coagulating mesenchymal cells. After E15, Notch peptide appeared in the nuclei and the cytoplasms of cells. In ISH at E14 and E15 expressions of Notch
mRNA appeared in cytoplasm of proliferating chondrocytes. From E16 to E19, Notch 1 mRNA was detected throughout almost all layers. These results suggest that Notch signaling plays an essential role for mandibular condylar cartilage development.

Jagged1 peptide appearing in mandibular condylar cartilage development

Norimasa Okafuji\(^1\), Takako Shimizu\(^1\), Keisuke Nakano\(^1,2\), Saburo Kurihara\(^1\) and Toshiyuki Kawakami\(^1,2\)

\(^1\) Matsumoto Dental University Institute for Oral Science

\(^2\) Department of Hard Tissue Research, Matsumoto Dental University Graduate School

We investigated the expression pattern of Jagged1 peptide in mandibular condylar cartilage. Mandibular condyle of ddY mice were fixed from embryonic day 15 (E15) through just after birth (E19). At E15, the proliferating cells had positive products of Jagged1 in their cytoplasms and cell membrane of almost all coagulating cells. At E17, cytoplasmic and membranous reactions of Jagged1 factors appeared strongly in the cells just inside the condylar cartilage sheath. At just after birth, Jagged1 was observed in a portion of almost all layer cells. These results suggest that Jagged1 plays an essential role for mandibular condylar cartilage morphogenesis and development.